Module mogptk.models.sm
Expand source code Browse git
import torch
import numpy as np
from ..dataset import DataSet
from ..model import Model, Exact, logger
from ..gpr import SpectralMixtureKernel, IndependentMultiOutputKernel, GaussianLikelihood
from ..util import plot_spectrum
class SM(Model):
"""
Independent Spectral Mixture kernels per channel. The spectral mixture kernel is proposed by [1]. The parameters will be randomly instantiated, use `init_parameters()` to initialize the parameters to reasonable values for the current data set.
Args:
dataset (mogptk.dataset.DataSet): `DataSet` object of data for all channels.
Q (int): Number of components.
inference: Gaussian process inference model to use, such as `mogptk.Exact`.
mean (mogptk.gpr.mean.Mean): The mean class.
name (str): Name of the model.
Attributes:
dataset: The associated mogptk.dataset.DataSet.
gpr: The mogptk.gpr.model.Model.
Examples:
>>> import numpy as np
>>> import mogptk
>>>
>>> t = np.linspace(0, 10, 100)
>>> y = np.sin(0.5 * t)
>>>
>>> data = mogptk.Data(t, y)
>>> model = mogptk.SM(data, Q=1)
>>> model.init_parameters()
>>> model.train()
>>> model.predict()
>>> data.plot()
[1] A.G. Wilson and R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", International Conference on Machine Learning 30, 2013
"""
def __init__(self, dataset, Q=1, inference=Exact(), mean=None, name="SM"):
if not isinstance(dataset, DataSet):
dataset = DataSet(dataset)
output_dims = dataset.get_output_dims()
input_dims = dataset.get_input_dims()[0]
kernel = IndependentMultiOutputKernel(
[SpectralMixtureKernel(Q=Q, input_dims=input_dims)
for j in range(output_dims)],
output_dims=output_dims)
for j in range(output_dims):
kernel[j].magnitude.assign(torch.rand(Q))
kernel[j].mean.assign(torch.rand(Q,input_dims))
kernel[j].variance.assign(torch.rand(Q,input_dims))
super().__init__(dataset, kernel, inference, mean, name)
self.Q = Q
nyquist = np.array(self.dataset.get_nyquist_estimation())[:,None,:].repeat(Q,axis=1)
for j in range(output_dims):
self.gpr.kernel[j].mean.assign(upper=np.maximum(self.gpr.kernel[j].mean.lower.detach().cpu().numpy(), nyquist[j,:,:]))
def init_parameters(self, method='LS', iters=500):
"""
Estimate kernel parameters from the data set. The initialization can be done using three methods:
- BNSE estimates the PSD via Bayesian non-parametris spectral estimation (Tobar 2018) and then selecting the greater Q peaks in the estimated spectrum, and use the peak's position, magnitude and width to initialize the mean, magnitude and variance of the kernel respectively.
- LS is similar to BNSE but uses Lomb-Scargle to estimate the spectrum, which is much faster but may give poorer results.
- IPS uses independent parameter sampling from the PhD thesis of Andrew Wilson 2014. It takes the inverse of the lengthscales drawn from a truncated Gaussian Normal(0, max_dist^2), the means drawn from a Unif(0, 0.5 / minimum distance between two points), and the mixture weights by taking the standard variation of the Y values divided by the number of mixtures.
In all cases the noise is initialized with 1/30 of the variance of each channel.
Args:
method (str): Method of estimation, such as IPS, LS, or BNSE.
iters (str): Number of iterations for initialization.
"""
input_dims = self.dataset.get_input_dims()
output_dims = self.dataset.get_output_dims()
if method.lower() not in ['ips', 'ls', 'bnse']:
raise ValueError("valid methods of estimation are IPS, LS, and BNSE")
if method.lower() == 'ips':
for j in range(output_dims):
nyquist = self.dataset[j].get_nyquist_estimation()
x = self.dataset[j].X[self.dataset[j].mask,:]
y = self.dataset[j].Y_transformer.forward(self.dataset[j].Y[self.dataset[j].mask], x)
x_range = np.max(x, axis=0) - np.min(x, axis=0)
weights = [2.0*y.std()/self.Q] * self.Q
means = nyquist * torch.rand(self.Q, input_dims[j])
variances = 1.0 / (torch.abs(torch.randn(self.Q, input_dims[j])) * x_range)
self.gpr.kernel[j].magnitude.assign(weights)
self.gpr.kernel[j].mean.assign(means)
self.gpr.kernel[j].variance.assign(variances)
return
elif method.lower() == 'ls':
amplitudes, means, variances = self.dataset.get_ls_estimation(self.Q)
if len(amplitudes) == 0:
logger.warning('LS could not find peaks for SM')
return
elif method.lower() == 'bnse':
amplitudes, means, variances = self.dataset.get_bnse_estimation(self.Q, iters=iters)
if np.sum(amplitudes) == 0.0:
logger.warning('BNSE could not find peaks for SM')
return
for j in range(output_dims):
self.gpr.kernel[j].magnitude.assign(amplitudes[j].mean(axis=1)**2)
self.gpr.kernel[j].mean.assign(means[j])
self.gpr.kernel[j].variance.assign(variances[j])
# noise
if isinstance(self.gpr.likelihood, GaussianLikelihood):
_, Y = self.dataset.get_train_data(transformed=True)
Y_std = [Y[j].std() for j in range(self.dataset.get_output_dims())]
if self.gpr.likelihood.scale().ndim == 0:
self.gpr.likelihood.scale.assign(np.mean(Y_std))
else:
self.gpr.likelihood.scale.assign(Y_std)
def plot_spectrum(self, method='LS', maxfreq=None, log=False, noise=False, title=None):
"""
Plot spectrum of kernel.
Args:
method (str): Set the method to get the spectrum from the data such as LS or BNSE.
maxfreq (float): Maximum frequency to plot, otherwise the Nyquist frequency is used.
log (boolean): Show X and Y axis in log-scale.
noise (boolean): Add noise to the PSD.
title (str): Set the title of the plot.
Returns:
matplotlib.figure.Figure: Figure.
matplotlib.axes.Axes: Axes.
"""
output_dims = self.dataset.get_output_dims()
names = self.dataset.get_names()
if maxfreq is not None:
maxfreq = [maxfreq] * len(self.dataset)
means = np.array([self.gpr.kernel[j].mean.numpy() for j in range(output_dims)]).transpose([1,0,2])
scales = np.array([np.sqrt(self.gpr.kernel[j].variance.numpy()) for j in range(output_dims)]).transpose([1,0,2])
weights = np.array([self.gpr.kernel[j].magnitude.numpy() for j in range(output_dims)]).transpose([1,0])
noises = None
if noise:
if not isinstance(self.gpr.likelihood, GaussianLikelihood):
raise ValueError("likelihood must be Gaussian to enable spectral noise")
if isinstance(self.gpr, Exact) and self.variance_per_data:
raise ValueError("likelihood variance must not be per data point to enable spectral noise")
noises = self.gpr.likelihood.scale.numpy()
return plot_spectrum(means, scales, dataset=self.dataset, weights=weights, noises=noises, method=method, maxfreq=maxfreq, log=log, titles=names, title=title)
Classes
class SM (dataset, Q=1, inference=<mogptk.model.Exact object>, mean=None, name='SM')
-
Independent Spectral Mixture kernels per channel. The spectral mixture kernel is proposed by [1]. The parameters will be randomly instantiated, use
init_parameters()
to initialize the parameters to reasonable values for the current data set.Args
dataset
:DataSet
DataSet
object of data for all channels.Q
:int
- Number of components.
inference
- Gaussian process inference model to use, such as
mogptk.Exact
. mean
:Mean
- The mean class.
name
:str
- Name of the model.
Attributes
dataset
- The associated mogptk.dataset.DataSet.
gpr
- The mogptk.gpr.model.Model.
Examples:
>>> import numpy as np >>> import mogptk >>> >>> t = np.linspace(0, 10, 100) >>> y = np.sin(0.5 * t) >>> >>> data = mogptk.Data(t, y) >>> model = mogptk.SM(data, Q=1) >>> model.init_parameters() >>> model.train() >>> model.predict() >>> data.plot()
[1] A.G. Wilson and R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", International Conference on Machine Learning 30, 2013
Model is the base class for multi-output Gaussian process models.
Args
dataset
:DataSet, Data
DataSet
withData
objects for all the channels. When a (list or dict of)Data
object is passed, it will automatically be converted to aDataSet
.kernel
:Kernel
- The kernel class.
inference
- Gaussian process inference model to use, such as
mogptk.Exact
. mean
:Mean
- The mean class.
name
:str
- Name of the model.
Attributes
Expand source code Browse git
class SM(Model): """ Independent Spectral Mixture kernels per channel. The spectral mixture kernel is proposed by [1]. The parameters will be randomly instantiated, use `init_parameters()` to initialize the parameters to reasonable values for the current data set. Args: dataset (mogptk.dataset.DataSet): `DataSet` object of data for all channels. Q (int): Number of components. inference: Gaussian process inference model to use, such as `mogptk.Exact`. mean (mogptk.gpr.mean.Mean): The mean class. name (str): Name of the model. Attributes: dataset: The associated mogptk.dataset.DataSet. gpr: The mogptk.gpr.model.Model. Examples: >>> import numpy as np >>> import mogptk >>> >>> t = np.linspace(0, 10, 100) >>> y = np.sin(0.5 * t) >>> >>> data = mogptk.Data(t, y) >>> model = mogptk.SM(data, Q=1) >>> model.init_parameters() >>> model.train() >>> model.predict() >>> data.plot() [1] A.G. Wilson and R.P. Adams, "Gaussian Process Kernels for Pattern Discovery and Extrapolation", International Conference on Machine Learning 30, 2013 """ def __init__(self, dataset, Q=1, inference=Exact(), mean=None, name="SM"): if not isinstance(dataset, DataSet): dataset = DataSet(dataset) output_dims = dataset.get_output_dims() input_dims = dataset.get_input_dims()[0] kernel = IndependentMultiOutputKernel( [SpectralMixtureKernel(Q=Q, input_dims=input_dims) for j in range(output_dims)], output_dims=output_dims) for j in range(output_dims): kernel[j].magnitude.assign(torch.rand(Q)) kernel[j].mean.assign(torch.rand(Q,input_dims)) kernel[j].variance.assign(torch.rand(Q,input_dims)) super().__init__(dataset, kernel, inference, mean, name) self.Q = Q nyquist = np.array(self.dataset.get_nyquist_estimation())[:,None,:].repeat(Q,axis=1) for j in range(output_dims): self.gpr.kernel[j].mean.assign(upper=np.maximum(self.gpr.kernel[j].mean.lower.detach().cpu().numpy(), nyquist[j,:,:])) def init_parameters(self, method='LS', iters=500): """ Estimate kernel parameters from the data set. The initialization can be done using three methods: - BNSE estimates the PSD via Bayesian non-parametris spectral estimation (Tobar 2018) and then selecting the greater Q peaks in the estimated spectrum, and use the peak's position, magnitude and width to initialize the mean, magnitude and variance of the kernel respectively. - LS is similar to BNSE but uses Lomb-Scargle to estimate the spectrum, which is much faster but may give poorer results. - IPS uses independent parameter sampling from the PhD thesis of Andrew Wilson 2014. It takes the inverse of the lengthscales drawn from a truncated Gaussian Normal(0, max_dist^2), the means drawn from a Unif(0, 0.5 / minimum distance between two points), and the mixture weights by taking the standard variation of the Y values divided by the number of mixtures. In all cases the noise is initialized with 1/30 of the variance of each channel. Args: method (str): Method of estimation, such as IPS, LS, or BNSE. iters (str): Number of iterations for initialization. """ input_dims = self.dataset.get_input_dims() output_dims = self.dataset.get_output_dims() if method.lower() not in ['ips', 'ls', 'bnse']: raise ValueError("valid methods of estimation are IPS, LS, and BNSE") if method.lower() == 'ips': for j in range(output_dims): nyquist = self.dataset[j].get_nyquist_estimation() x = self.dataset[j].X[self.dataset[j].mask,:] y = self.dataset[j].Y_transformer.forward(self.dataset[j].Y[self.dataset[j].mask], x) x_range = np.max(x, axis=0) - np.min(x, axis=0) weights = [2.0*y.std()/self.Q] * self.Q means = nyquist * torch.rand(self.Q, input_dims[j]) variances = 1.0 / (torch.abs(torch.randn(self.Q, input_dims[j])) * x_range) self.gpr.kernel[j].magnitude.assign(weights) self.gpr.kernel[j].mean.assign(means) self.gpr.kernel[j].variance.assign(variances) return elif method.lower() == 'ls': amplitudes, means, variances = self.dataset.get_ls_estimation(self.Q) if len(amplitudes) == 0: logger.warning('LS could not find peaks for SM') return elif method.lower() == 'bnse': amplitudes, means, variances = self.dataset.get_bnse_estimation(self.Q, iters=iters) if np.sum(amplitudes) == 0.0: logger.warning('BNSE could not find peaks for SM') return for j in range(output_dims): self.gpr.kernel[j].magnitude.assign(amplitudes[j].mean(axis=1)**2) self.gpr.kernel[j].mean.assign(means[j]) self.gpr.kernel[j].variance.assign(variances[j]) # noise if isinstance(self.gpr.likelihood, GaussianLikelihood): _, Y = self.dataset.get_train_data(transformed=True) Y_std = [Y[j].std() for j in range(self.dataset.get_output_dims())] if self.gpr.likelihood.scale().ndim == 0: self.gpr.likelihood.scale.assign(np.mean(Y_std)) else: self.gpr.likelihood.scale.assign(Y_std) def plot_spectrum(self, method='LS', maxfreq=None, log=False, noise=False, title=None): """ Plot spectrum of kernel. Args: method (str): Set the method to get the spectrum from the data such as LS or BNSE. maxfreq (float): Maximum frequency to plot, otherwise the Nyquist frequency is used. log (boolean): Show X and Y axis in log-scale. noise (boolean): Add noise to the PSD. title (str): Set the title of the plot. Returns: matplotlib.figure.Figure: Figure. matplotlib.axes.Axes: Axes. """ output_dims = self.dataset.get_output_dims() names = self.dataset.get_names() if maxfreq is not None: maxfreq = [maxfreq] * len(self.dataset) means = np.array([self.gpr.kernel[j].mean.numpy() for j in range(output_dims)]).transpose([1,0,2]) scales = np.array([np.sqrt(self.gpr.kernel[j].variance.numpy()) for j in range(output_dims)]).transpose([1,0,2]) weights = np.array([self.gpr.kernel[j].magnitude.numpy() for j in range(output_dims)]).transpose([1,0]) noises = None if noise: if not isinstance(self.gpr.likelihood, GaussianLikelihood): raise ValueError("likelihood must be Gaussian to enable spectral noise") if isinstance(self.gpr, Exact) and self.variance_per_data: raise ValueError("likelihood variance must not be per data point to enable spectral noise") noises = self.gpr.likelihood.scale.numpy() return plot_spectrum(means, scales, dataset=self.dataset, weights=weights, noises=noises, method=method, maxfreq=maxfreq, log=log, titles=names, title=title)
Ancestors
Methods
def init_parameters(self, method='LS', iters=500)
-
Estimate kernel parameters from the data set. The initialization can be done using three methods:
- BNSE estimates the PSD via Bayesian non-parametris spectral estimation (Tobar 2018) and then selecting the greater Q peaks in the estimated spectrum, and use the peak's position, magnitude and width to initialize the mean, magnitude and variance of the kernel respectively.
- LS is similar to BNSE but uses Lomb-Scargle to estimate the spectrum, which is much faster but may give poorer results.
- IPS uses independent parameter sampling from the PhD thesis of Andrew Wilson 2014. It takes the inverse of the lengthscales drawn from a truncated Gaussian Normal(0, max_dist^2), the means drawn from a Unif(0, 0.5 / minimum distance between two points), and the mixture weights by taking the standard variation of the Y values divided by the number of mixtures.
In all cases the noise is initialized with 1/30 of the variance of each channel.
Args
method
:str
- Method of estimation, such as IPS, LS, or BNSE.
iters
:str
- Number of iterations for initialization.
Expand source code Browse git
def init_parameters(self, method='LS', iters=500): """ Estimate kernel parameters from the data set. The initialization can be done using three methods: - BNSE estimates the PSD via Bayesian non-parametris spectral estimation (Tobar 2018) and then selecting the greater Q peaks in the estimated spectrum, and use the peak's position, magnitude and width to initialize the mean, magnitude and variance of the kernel respectively. - LS is similar to BNSE but uses Lomb-Scargle to estimate the spectrum, which is much faster but may give poorer results. - IPS uses independent parameter sampling from the PhD thesis of Andrew Wilson 2014. It takes the inverse of the lengthscales drawn from a truncated Gaussian Normal(0, max_dist^2), the means drawn from a Unif(0, 0.5 / minimum distance between two points), and the mixture weights by taking the standard variation of the Y values divided by the number of mixtures. In all cases the noise is initialized with 1/30 of the variance of each channel. Args: method (str): Method of estimation, such as IPS, LS, or BNSE. iters (str): Number of iterations for initialization. """ input_dims = self.dataset.get_input_dims() output_dims = self.dataset.get_output_dims() if method.lower() not in ['ips', 'ls', 'bnse']: raise ValueError("valid methods of estimation are IPS, LS, and BNSE") if method.lower() == 'ips': for j in range(output_dims): nyquist = self.dataset[j].get_nyquist_estimation() x = self.dataset[j].X[self.dataset[j].mask,:] y = self.dataset[j].Y_transformer.forward(self.dataset[j].Y[self.dataset[j].mask], x) x_range = np.max(x, axis=0) - np.min(x, axis=0) weights = [2.0*y.std()/self.Q] * self.Q means = nyquist * torch.rand(self.Q, input_dims[j]) variances = 1.0 / (torch.abs(torch.randn(self.Q, input_dims[j])) * x_range) self.gpr.kernel[j].magnitude.assign(weights) self.gpr.kernel[j].mean.assign(means) self.gpr.kernel[j].variance.assign(variances) return elif method.lower() == 'ls': amplitudes, means, variances = self.dataset.get_ls_estimation(self.Q) if len(amplitudes) == 0: logger.warning('LS could not find peaks for SM') return elif method.lower() == 'bnse': amplitudes, means, variances = self.dataset.get_bnse_estimation(self.Q, iters=iters) if np.sum(amplitudes) == 0.0: logger.warning('BNSE could not find peaks for SM') return for j in range(output_dims): self.gpr.kernel[j].magnitude.assign(amplitudes[j].mean(axis=1)**2) self.gpr.kernel[j].mean.assign(means[j]) self.gpr.kernel[j].variance.assign(variances[j]) # noise if isinstance(self.gpr.likelihood, GaussianLikelihood): _, Y = self.dataset.get_train_data(transformed=True) Y_std = [Y[j].std() for j in range(self.dataset.get_output_dims())] if self.gpr.likelihood.scale().ndim == 0: self.gpr.likelihood.scale.assign(np.mean(Y_std)) else: self.gpr.likelihood.scale.assign(Y_std)
def plot_spectrum(self, method='LS', maxfreq=None, log=False, noise=False, title=None)
-
Plot spectrum of kernel.
Args
method
:str
- Set the method to get the spectrum from the data such as LS or BNSE.
maxfreq
:float
- Maximum frequency to plot, otherwise the Nyquist frequency is used.
log
:boolean
- Show X and Y axis in log-scale.
noise
:boolean
- Add noise to the PSD.
title
:str
- Set the title of the plot.
Returns
matplotlib.figure.Figure
- Figure.
matplotlib.axes.Axes
- Axes.
Expand source code Browse git
def plot_spectrum(self, method='LS', maxfreq=None, log=False, noise=False, title=None): """ Plot spectrum of kernel. Args: method (str): Set the method to get the spectrum from the data such as LS or BNSE. maxfreq (float): Maximum frequency to plot, otherwise the Nyquist frequency is used. log (boolean): Show X and Y axis in log-scale. noise (boolean): Add noise to the PSD. title (str): Set the title of the plot. Returns: matplotlib.figure.Figure: Figure. matplotlib.axes.Axes: Axes. """ output_dims = self.dataset.get_output_dims() names = self.dataset.get_names() if maxfreq is not None: maxfreq = [maxfreq] * len(self.dataset) means = np.array([self.gpr.kernel[j].mean.numpy() for j in range(output_dims)]).transpose([1,0,2]) scales = np.array([np.sqrt(self.gpr.kernel[j].variance.numpy()) for j in range(output_dims)]).transpose([1,0,2]) weights = np.array([self.gpr.kernel[j].magnitude.numpy() for j in range(output_dims)]).transpose([1,0]) noises = None if noise: if not isinstance(self.gpr.likelihood, GaussianLikelihood): raise ValueError("likelihood must be Gaussian to enable spectral noise") if isinstance(self.gpr, Exact) and self.variance_per_data: raise ValueError("likelihood variance must not be per data point to enable spectral noise") noises = self.gpr.likelihood.scale.numpy() return plot_spectrum(means, scales, dataset=self.dataset, weights=weights, noises=noises, method=method, maxfreq=maxfreq, log=log, titles=names, title=title)
Inherited members